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Abstract

The recent past has witnessed a great success in building inexpensive high performance

computing platforms. This has been achieved by designing a parallel computing platform

using commodity off-the-shelf components and free, open-source software. Such systems,

termed Beowulf clusters, have now made high performance computing affordable for many

people.

A Message passing system is the programming model of choice for such clusters. To

derive the maximum performance from such a system, it becomes imperative that the inter-

process communication infrastructure works at the maximum efficiency possible. The

present work looks at communication methods currently in used and their shortcomings

in the context of cluster computing. An alternative communication framework is presented

and preliminary results of performance measurements against existing methods are pro-

vided. The results obtained indicate promise in developing the proposed framework fur-

ther.
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CHAPTER 1

Introduction

1.1 High Performance Computing

High performance computing has been gaining importance in recent times. We start by

introducing different classes of these high performance machines. This classification is

based on the method of manipulating instructions and data streams and comprises four

main architectural classes.

SISD machines SISD stands for Single Instruction Single Data. These are the conven-

tional systems that contain one CPU and hence can accommodate one instruction

stream that is executed serially. Nowadays many large mainframes may have more

than one CPU but each of these execute instruction streams that are unrelated.

Therefore, such systems still should be regarded as (a couple of) SISD machines

acting on different data spaces. Examples of SISD machines are for instance most

workstations like those of DEC, Hewlett-Packard, and Sun Microsystems.

SIMD machines SIMD stands for Single Instruction Multiple Data. Such systems often

have a large number of processing units, ranging from 1,024 to 16,384, designed

such that all may execute the same instruction on different data in lock-step. So,

a single instruction manipulates many data items in parallel. Examples of SIMD

machines in this class are the CPP DAP Gamma II and the Alenia Quadrics.

MISD machines MISD stands for Multiple Instruction Single Data. Theoretically, in

these machines multiple instructions should act on a single stream of data. As yet

no practical machine in this class has been constructed nor are such systems easy to

conceive.

MIMD machines MIMD stands for Multiple Instruction Multiple Data. These machines

execute several instruction streams in parallel on different data. The difference be-

tween the multi-processor SISD machines mentioned above and this kind lies in the

fact that the instructions and data are related because they represent different parts



of the same task to be executed. MIMD systems may run many sub-tasks in parallel

in order to shorten the time-to-solution for the main task to be executed.

There is another important distinction between the classes of systems :

Shared memory systems Shared memory systems have multiple CPUs all of which share

the same address space. This means that the knowledge of where data is stored is

of no concern to the user as there is only one memory accessed by all CPUs on an

equal basis. Shared memory systems can be both SIMD or MIMD.

Distributed memory systems In this case each CPU has its own associated memory. The

CPUs are connected by some network and may exchange data between their respec-

tive memories when required. In contrast to shared memory machines, the user must

be aware of the location of the data in the local memories and will have to move or

distribute data explicitly when needed. Again, distributed memory systems may be

either SIMD or MIMD. The first class of SIMD systems mentioned which operate

in lock step, all have distributed memories associated to the processors. As we will

see, distributed-memory MIMD systems exhibit a large variety in the topology of

their connecting network. The details of this topology are largely hidden from the

user which is quite helpful with respect to portability of applications.

Although the difference between shared and distributed memory machines seems clear

cut, this is not always entirely the case from user’s point of view. Virtual shared memory

can also be simulated at the programming level: A specification of High Performance For-

tran (HPF) was published in 1993 [1] which, by means of compiler directives, distributes

the data over the available processors. Therefore, the system on which HPF is implemented

in this case will look like a shared memory machine to the user. Other vendors of Massively

Parallel Processing systems (sometimes called MPP systems), like HP and SGI/Cray, also

are able to support proprietary virtual shared-memory programming models due to the fact

that these physically distributed memory systems are able to address the whole collective

address space. For the user such systems have one global address space spanning all of the

memory in the system. In addition, packages like TreadMarks [2] provide a virtual shared

memory environment for networks of workstations(NOWs).

Another trend that has came up in the last few years is distributed processing. This

takes the Distributed Memory - MIMD concept one step further. Instead of housing many

integrated processors in one or several boxes, several independent workstations, main-

frames, etc., are connected by (Gigabit) Ethernet, FDDI or other high speed networks and

set to work concurrently on tasks in the same program. Conceptually, this is not different
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from Distributed Memory - MIMD computing, but the communication between proces-

sors is often orders of magnitude slower. Many packages to realise distributed computing

are available. Examples of these are PVM (Parallel Virtual Machine), and MPI (Message

Passing Interface). This style of programming, called the “message passing” model has

become so widely accepted that PVM and MPI have been adopted by virtually all major

vendors of distributed-memory MIMD systems and even on shared-memory MIMD sys-

tems for compatibility reasons. In addition there is a tendency to cluster shared-memory

systems, for instance by HiPPI channels, to obtain systems with a very high computational

power. Example., the NEC SX-5, and the SGI/Cray SV1 have this structure. So, within the

clustered nodes a shared-memory programming style can be used while between clusters

message-passing could be used.

1.2 The Beowulf Class of Cluster Computers

In the summer of 1994 Thomas Sterling and Don Becker, working at CESDIS under the

sponsorship of the ESS project, built a cluster computer consisting of 16 DX4 processors

connected by channel bonded Ethernet. They called their machine Beowulf. The machine

was an instant success and their idea of providing COTS (Commodity off the shelf) base

systems to satisfy specific computational requirements quickly spread through NASA and

into the academic and research communities. The development effort for this first machine

quickly grew into a what we now call the Beowulf Project. Some of the major accom-

plishment of the Beowulf Project will be chronicled below, but a non-technical measure of

success is the observation that researchers within the High Performance Computer com-

munity are now referring to such machines as “Beowulf Class Cluster Computers.” That

is, Beowulf clusters are now recognized as genre within the High Performance Computing

community.

The exact configuration of a balanced cluster will continue to change and will remain

dependent on the size of the cluster and the relationship between processor speed and net-

work bandwidth and the current prices of each of the components. An important character-

istic of Beowulf clusters is that changes in the configuration of the cluster do not change the

programming model. Therefore, users of these systems can expect to enjoy more forward

compatibility then we have experienced in the past.

Another key component to forward compatibility is the system software used on Be-

owulf. With the maturity and robustness of Linux, GNU software and the “standardization”

of message passing via PVM and MPI, programmers now have a guarantee that the pro-

grams they write will run on future Beowulf clusters - regardless of who makes the proces-
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sors or the networks. A natural consequence of coupling the system software with vendor

hardware is that the system software must be developed and refined only slightly ahead

of the application software. The historical criticism that system software for high perfor-

mance computers is always inadequate is actually unfair to those developing it. In most

cases coupling vendor software and hardware forces the system software to be perpetually

immature. The model used for Beowulf system software can break that rule.

In the taxonomy of parallel computers, Beowulf clusters fall somewhere between MPP

(Massively Parallel Processors, like the nCube, CM5, Convex SPP, Cray T3D, Cray T3E,

etc.) and NOWs (Networks of Workstations). The Beowulf project benefits from devel-

opments in both these classes of architecture. MPPs are typically larger and have a lower

latency interconnect network than an Beowulf cluster. Programmers are still required to

worry about locality, load balancing, granularity, and communication overheads in order

to obtain the best performance. Even on shared memory machines, many programmers

develop their programs in a message passing style. Programs that do not require fine-grain

computation and communication can usually be ported and run effectively on Beowulf

clusters. Programming a NOW is usually an attempt to harvest unused cycles on an already

installed base of workstations in a lab or on a campus. Programming in this environment

requires algorithms that are extremely tolerant of load balancing problems and large com-

munication latency. Any program that runs on a NOW will run at least as well on a cluster.

A Beowulf class cluster computer is distinguished from a Network of Workstations by

several subtle but significant characteristics. First, the nodes in the cluster are dedicated to

the cluster. This helps ease load balancing problems, because the performance of individual

nodes are not subject to external factors. Also, since the interconnection network is isolated

from the external network, the network load is determined only by the application being

run on the cluster. This eases the problems associated with unpredictable latency in NOWs.

All the nodes in the cluster are within the administrative jurisdiction of the cluster. For

example, the interconnection network for the cluster is not visible from the outside world

so the only authentication needed between processors is for system integrity. On a NOW,

one must be concerned about network security. Another example is the Beowulf software

that provides a global process ID. This enables a mechanism for a process on one node to

send signals to a process on another node of the system, all within the user domain. This

is not allowed on a NOW. Finally, operating system parameters can be tuned to improve

performance. For example, a workstation should be tuned to provide the best interactive

feel (instantaneous responses, short buffers, etc.), but in cluster the nodes can be tuned to

provide better throughput for coarser-grain jobs because they are not interacting directly

with users.
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The future of the Beowulf project will be determined collectively by the individual or-

ganizations contributing to the Beowulf project and by the future of mass-market COTS. As

microprocessor technology continues to evolve and higher speed networks become cost ef-

fective and as more application developers move to parallel platforms, the Beowulf project

will evolve to fill its niche.

An unabridged version of the above account of Beowulf history is available online at:

http://www.beowulf.org/beowulf/history.html
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CHAPTER 2

Parallel Programming

Exploiting the full potential of a parallel computer requires a cooperative effort between

the user and the language system. There is clearly a trade-off between the amount of in-

formation the user has to provide and the amount of effort the compiler has to expend to

generate optimal parallel code. At one end of the spectrum are languages where the user

has full control and has to explicitly provide all the details while the compiler effort is min-

imal. This approach, called explicit parallel programming, requires a parallel algorithm to

explicitly specify how the processors will cooperate in order to solve a particular problem.

At the other end of the spectrum are sequential languages where the compiler has full re-

sponsibility for extracting the parallelism in the program. This approach, called implicit

parallel programming, is easier for the user because it places the burden of parallelization

on the compiler. Clearly, there are advantages and disadvantages to both, explicit and im-

plicit, parallel programming approaches. Many current parallel programming languages

for parallel computers are essentially sequential languages augmented by a set of special

system calls (primitives). A parallel program on these computers is a collection of co-

operating processes which execute concurrently, sychronizing and sharing data among the

processors making use of these primitives. The lack of standards in these programming lan-

guages makes parallel programmes difficult to port to different parallel computers. Parallel

programming libraries address this issue by offering vendor-independent primitives.

There are, in general, three (explicit) parallel programming models:

� Message Passing Programming

� Shared Memory Programming

� Data Parallel Programming

The first of these is the model of choice for developing programs for any Beowulf class

machine.



2.1 Message Passing Programming

In message passing programming, programmers view their programs as a collection of

cooperating processes with private variables. The only way for an application to share

data among processes is for the programmer to explicitly code commands to move data

from one process to another. The message passing programming style is naturally suited

to Beowulf class machines in which some memory is local to each processor but none is

globally accessible.

Message passing programming implementations need only two primitives in addition

to normal sequential language primitives. These are Send and Receive primitives. These

primitives are used to exchange data/instructions among processes. Both these primitives

come in two variants - the blocking and the non-blocking calls. In a blocked send call,

after a message is sent, program execution is suspended till the destination process receives

the message; execution is resumed thereafter. This is also called synchronous send. In

the non-blocking version of send, program execution continues after the message has been

sent, irrespective of whether it has been delivered to its destination. This is also called

asynchronous send.

There are two public domain message passing systems which are used widely - Mes-

sage Passing Interface (MPI) and Parallel Virtual Machine (PVM). MPI is now a well

accepted standard and is widely used. Although not a formal standard, PVM is also quite

popular. For the present work, we chose the MPI approach.

2.2 Message Passing Interface

MPI, developed by the MPI Forum [3], is a standard specification for a library of message

passing functions. MPI specifies a public-domain, platform independent standard [4] of

a message library, thereby achieving portability. This specification is OS, platform and

vendor neutral but encourages development of optimized implementations of the standard

for various platforms.

MPI is a message-passing application programmer interface, together with protocol

and semantic specifications for how its features must behave in any implementation. MPI

includes point-to-point message passing and collective (global) operations, all scoped to a

user-specified group of processes. Furthermore, MPI provides abstractions for processes

at two levels. First, processes are named according to the rank of the group in which the

communication is being performed. Second, virtual topologies allow for graph or Carte-

sian naming of processes that help relate the application semantics to the message passing
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semantics in a convenient, efficient way. Communicators, which house groups and com-

munication context (scoping) information, provide an important measure of safety that is

necessary and useful for building up library-oriented parallel code.

MPI also provides three additional classes of services: environmental inquiry, basic

timing information for application performance measurement, and a profiling interface for

external performance monitoring. MPI makes heterogeneous data conversion a transparent

part of its services by requiring datatype specification for all communication operations.

Both built-in and user-defined datatypes are provided.

MPI provides support for both the Single Program Multiple Data (SPMD) and Multi-

ple Programs Multiple Data (MPMD) modes of parallel programming. Furthermore, MPI

can support interapplication computations through intercommunicator operations, which

support communication between groups rather than within a single group. Dataflow-style

computations also can be constructed from intercommunicators. MPI provides a thread-

safe application programming interface (API), which will be useful in multithreaded envi-

ronments as implementations mature and support thread safety themselves.

Several open source implementations [5] of the MPI library have been developed.

Some of them are:

MPICH The Argonne National Laboratory/Mississippi State University open source im-

plementation. [6]

LAM/MPI Originally from the Ohio Supercomputing Center, currently maintained by In-

diana University. [7]

Vendor Provided Several vendors such as IBM, SGI, Cray Research and HP provide MPI

libraries for their platforms, affirming the stature of MPI as the message passing

standard.

2.3 MPICH

MPICH is an open-source, portable implementation of the Message-Passing Interface Stan-

dard. The current stable version (1.2.5) contains a complete implementation of version 1.2

of the MPI Standard and also significant parts of MPI-2, particularly in the area of parallel

I/O. The upcoming MPICH2 release [Section 7] will provide a complete implementation

of MPI-2. The “CH” in MPICH stands for “Chameleon,” symbol of adaptability to one’s

environment and thus of portability.

The central mechanism for achieving the goals of portability and performance is a spec-

ification called the abstract device interface (ADI) [8]. All MPI functions are implemented
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in terms of the macros and functions that make up the ADI. All such code is portable.

Hence, MPICH contains many implementations of the ADI, which provide portability, ease

of implementation, and an incremental approach to trading portability for performance.

One implementation of the ADI is in terms of a lower level (yet still portable) interface

called the channel interface [9]. The channel interface can be extremely small (five func-

tions at minimum) and provides the quickest way to port MPICH to a new environment.

Such a port can then be expanded gradually to include specialized implementation of more

of the ADI functionality.

2.3.1 Abstract Device Interface

The design of the ADI provided by MPICH allows for, but does not require, a range of

possible functions of the device. The specific environment in which the device operates

can strongly affect the choice of implementation, particularly with regard to how data is

transferred to and from the user’s memory space. For example, if the device code runs

in the user’s address space, then it can easily copy data to and from the user’s space. If

it runs as part of the user’s process (for example, as library routines on top of a simple

hardware device), then the “device” and the API can easily communicate, calling each

other to perform services. If, on the other hand, the device is operating as a separate

process and requires a context switch to exchange data or requests, then switching between

processes can be very expensive, and it becomes important to minimize the number of such

exchanges by providing all information needed with a single call.

Although MPI is a relatively large specification, the device-dependent parts are small.

By implementing MPI using the ADI, code is made available that can be shared among

many implementations. Efficiency is obtained by platform-specific implementations of

the abstract device. For this approach to be successful, the semantics of the ADI do not

preclude maximally efficient instantiations using modern message-passing hardware.

To help in understanding the design, it is useful to look at some abstract devices for

other operations, for example, for graphical display or for printing. Most graphical displays

provide for drawing a single pixel at an arbitrary location; any other graphical function can

be built by using this single, elegant primitive. However, high-performance graphical dis-

plays offer a wide variety of additional functions, ranging from block copy and line draw-

ing to 3-D surface shading. One approach for allowing an API (application programmer

interface) to access the full power of the most sophisticated graphics devices, without sac-

rificing portability to less capable devices, is to define an abstract device with a rich set of

functions, and then provide software emulations of any functions not implemented by the
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graphics device. MPICH uses the same approach in defining its message-passing ADI.

A message-passing ADI must provide four sets of functions: specifying a message to

be sent or received, moving data between the API and the message-passing hardware, man-

aging lists of pending messages (both sent and received), and providing basic information

about the execution environment (e.g., how many tasks are there). The MPICH ADI pro-

vides all of these functions; however, many message-passing hardware systems may not

provide list management or elaborate data-transfer abilities. These functions are emulated

through the use of auxiliary routines, described in [8].

The abstract device interface is a set of function definitions (which may be realized as

either C functions or macro definitions) in terms of which the user-callable standard MPI

functions may be expressed. As such, it provides the message-passing protocols that dis-

tinguish MPICH from other implementations of MPI. In particular, the ADI layer contains

the code for packetizing messages and attaching header information, managing multiple

buffering policies, matching posted receives with incoming messages or queuing them if

necessary, and handling heterogeneous communications.

The routines at the lowest level in the ADI hierarchy can be in terms of a vendor’s own

existing message-passing system or new code for the purpose or can be expressed in terms

of a further portable layer, the channel interface.

2.3.2 Channel Interface

At the lowest level, what is really needed is just a way to transfer data, possibly in small

amounts, from one process’s address space to another’s. Although many implementations

are possible, the specification can be done with a small number of definitions. The channel

interface, described in more detail in [9], consists of only five required functions. Three

routines send and receive envelope (or control) information and two routines send and

receive data. Others, which might be available in specially optimized implementations, are

defined and used when certain macros are defined that signal that they are available. These

include various forms of blocking and nonblocking operations for both envelopes and data.

These operations are based on a simple capability to send data from one process to

another process. No more functionality is required than what is provided by Unix in the

select, read and write operations. The ADI code uses these simple operations to provide

all other operations that are used by the MPI implementation.

MPICH includes multiple implementations of the channel interface:

Chameleon Perhaps the most significant implementation is the Chameleon version. By
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implementing the channel interface in terms of Chameleon [10] macros, portability

is provided to a number of systems at one stroke, with no additional overhead, since

Chameleon macros are resolved at compile time. Chameleon macros exist for most

vendor message-passing systems, and also for p4 [11], which in turn is portable to

very many systems including Beowulf clusters.

Shared memory A completely different implementation of the channel interface has been

done (portably) for a shared-memory abstraction, in terms of a shared-memory

malloc and locks. There are, in turn, multiple (macro) implementations of the

shared-memory implementation of the channel interface.

Specialized Some vendors (SGI, HP-Convex) have implemented the channel interface di-

rectly, without going through the shared-memory portability layer. This approach

takes advantage of particular memory models and operating system features that

the shared-memory implementation of the channel interface does not assume are

present.

Currently, on Beowulf class systems, MPICH utilises the p4 channel interface to pro-

vide message passing functionality. The p4 interface provides communication functionality

across heterogeneous systems by using the TCP/IP protocol suite which, as is explained in

Section 3.3, provides seamless, reliable communication across different platforms.

The basic idea behind the current work is to determine methods by which the com-

munication performance of the current MPICH implementation on Beowulf class clusters

can be improved. An understanding of the basics of data communication over networks is a

prerequisite for working towards this goal. The following chapter provides a brief overview

of data networks and the TCP/IP protocol suite.
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CHAPTER 3

Computer Data Networks

Computer networks have revolutionized our use of computers. Computer systems used to

be stand-alone entities. Each computer was self contained and had all the peripherals and

software required to do a particular job. It was the need to share information and resources

that changed this scenario. Today, probably the Internet is the most famous example of a

communication network; but the range of features and services offered by data networks is

impressive. To offer a few examples:

� Electronic mail has already revolutionized the way we communicate.

� File transfer across systems, either in the same room or continents apart, is a routine

affair.

� Sharing of peripherals such as printers and scanners helps optimize resources.

� Remote login and remote application execution provide great ease in several situa-

tions.

� The ability to move data across a range of devices like cellphones, laptops and work-

stations provides unparalled power and convenience.

Communication networks can be divided into two basic types: circuit-switched and

packet-switched. The classic example of a circuit-switched network is the original public

telephone system (the current system is a frame relay based network, we shall not discuss

that network here). When a telephone call was placed, a dedicated circuit was established

by the telecom switching centres (telephone exchanges) from your telephone to the other

telephone. There might have been a number of switching centres in between you and the

other end, but once this circuit was established you were guaranteed exclusive access to it

and the only delay in communication was the time it took for the signal to travel from one

end to the other.

An internet (not the Internet, just any collection of interconnecting networks), on the

other hand, typically uses packet-switching techniques.



3.1 Packet Switching

Unlike circuit-switched networks where a dedicated communication line is established be-

tween one party and the other, all parties which are on the network share communication

links. The information to be transmitted is divided into pieces and each piece is transmitted

on its own through the connection of networks. These pieces are called packets.

A packet is the smallest unit that can be transferred through the networks by itself. A

packet must contain the address of its final destination, so that it can be sent on its way

through the internet. With a circuit-switched network, we are guaranteed that once a circuit

is established, we can use the full capacity of the circuit. With a packet switched network,

however, we are sharing the communication bandwidth with other computers.

When a packet travels through an internet, it is routed through the various interconnect-

ing entities that make up that particular internet. Since there is usually no predetermined

path from source to destination for the packet to follow, there is no telling which route will

it eventually take. Hence, the time taken for a packet to finish its journey is a function of

the route it takes and the current volume of traffic on that route.

Packet-switching, by its very nature, gives rise to a number of issues which must be

dealt with in order to facilitate data transfer. Some of the issues are discussed in the subse-

quent sections.

3.1.1 Gateways

When we speak of internets, we are talking about two or more networks connected by en-

tities called gateways. The networks in question may be homogeneous running the same

protocols [Section 3.2] and utilizing similar networking hardware or they may be different

in terms of the protocols and/or the hardware used. A packet making its way through a ho-

mogeneous network is in easy waters but the one making its way through a heterogeneous

network has to be translated as it crosses boundaries so that it can be understood by the

network trying to read its destination information in order to route it towards its terminus.

It’s the gateways which provide this functionality, among other things.

3.1.2 Fragmentation

Most networks have a maximum packet size that they can handle, based on the charac-

teristics of the physical medium over which packets are being sent. This is called the

network’s maximum transmission unit or MTU. For example, part of the Ethernet standard
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[Section 4.2] is that the data portion of the frame cannot exceed 1500 bytes. The maximum

for another kind of network called the token-ring network is typically 4464 bytes, while

some networks have smaller MTUs. Consider a situation where a packet is starting from

host a on network A and is destined for host b on network B. The MTU on the medium

used in networks A and B is 1500 bytes but the MTU on the link joining A and B is 128

bytes. Obviously, something has to be done when packets are sent from a to b.

Fragmentation is the breaking up of a data stream into smaller pieces. Some networks

use the term segmentation instead of fragmentation. The reverse of fragmentation is re-

assembly. Using these techniques, the problem of variable MTU can be overcome.

3.1.3 Modes of Service

When we speak of the kind of service provided by any network implementation, we gener-

ally talk of the following parameters:

� connection-oriented or connectionless

� sequencing

� error control

� flow control

A connection-oriented service requires that the two application programs establish a

logical connection with each other before communication can take place. There is some

overhead involved in establishing this connection. This type of service is often used when

more than one message is to be exchanged between two peer entities.

The converse of this is a connectionless service, also called a datagram service. In

this type of service, messages are transmitted from one system to the other, independent of

other messages. This means that every message must contain all information required for

its delivery. Section 4.3 provides more details on this.

Sequencing describes the property that the data is received by the receiver in the same

order as it is transmitted by the sender. As mentioned earlier, in a packet-switched network,

it is possible for two consecutive packets to take different routes from the source computer

to the destination computer, and thus arrive at their destination in a different order from the

order in which they were sent.

Error Control guarantees that error-free data is received at the destination. There are

two conditions that can generate errors: the data gets corrupted (modified during transmis-
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sion) or the data gets lost. The network implementation has to provide for recovery from

both these situations.

Flow control assures that the sender does not overwhelm the receiver by sending data at

a rate faster than the receiver can process the data. This is also called pacing. If flow control

is not provided, it is possible for the receiver to lose data because of lack of resources.

Many of these parameters occur together. For example, sequencing and error control

are usually provided together and the protocol is then termed reliable. It is also unusual

to find a reliable protocol that does not provide flow control. It is unusual to have a con-

nectionless protocol that provides sequencing, since the messages in such a protocol are

usually unrelated to previous or future messages.

3.1.4 Addressing

The end points for communication are two user processes, one on each computer. With an

internet, the two systems could be located on different networks, connected by one or more

gateways. This requires three levels of addressing.

� A particular network must be specified.

� Each host on a network must have a unique address.

� Each process on a host must have a unique identifier on that host.

Again, a network implementation has to address this addressing issue, which can be quite

complex if one thinks about the fact that there are millions on computers on the Internet

and every process running on every connected computer must have a unique way to define

its position on the Internet.

3.2 Of Standards and Stacks

3.2.1 Layering

The computers in a network use well-defined protocols to communicate. A protocol is

a set of rules and conventions between the communicating participants. As we saw in

the preceding sections, the complexity involved in implementing these protocols over a

packet-switched network is quite daunting. This complex task could be solved by a single,
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monolithic system or by breaking up the task into pieces and solve each piece individu-

ally. Experience has shown that the second approach leads to a better and more extensible

solution.

It is possible that part of the solution developed for a file transfer program can also

be used for a remote printing program. Also, if we are writing the file transfer program

assuming the computers are connected with an Ethernet, it could turn out that part of this

program is usable for computers connected with a leased telephone line.

In the context of networking, this approach of breaking down the task into simpler

subtasks is called layering. We divide the communication problem into pieces (layers) and

let each layer concentrate on providing a particular function. Well-defined interfaces are

provided between layers. Very enough, these layers stacked one on top of the other are

collectively called the networking stack.

3.2.2 OSI Model

The starting point for describing the layers in a network is the International Standards Or-

ganization (ISO) open systems interconnection model (OSI) for computer communication.

This model, shown in Figure 3.1, was developed between 1977 and 1984 and is intended

to serve as a guide and not a specification. It provides a framework in which standards can

be developed for the services and protocols at each layer. In fact, several networks such as

TCP/IP were developed before the OSI model. A study of the TCP/IP layering model will

reveal that although it doesn’t implement the 7-layer OSI model exactly, it provides similar

functionality by a similar layering approach.

7 Application message

6 Presentation message

5 Session message

4 Transport message

3 Network packets

2 Data Link frames

1 Physical bits

Figure 3.1: OSI 7-layer model with units of information exchanged at each layer.

One advantage of layering is to provide well-defined interfaces between the layers, so

that a change in one layer doesn’t affect an adjacent layer. It is important to understand

that protocols exist at each layer. A protocol suite, or a protocol family as it is sometimes
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called, is a collection of protocols from more than one layer that forms the basis of a useful

network. TCP/IP is one such protocol suite.

3.3 TCP/IP - The Internet Protocols

3.3.1 Introduction

The Internet was first proposed by the US Advanced Research Projects Agency, as a method

of testing viability of packet switching networks, and was later developed by the Defense

Advanced Research Projects Agency.

In the early years, the purpose and usage of the Arpanet network was widely discussed,

leading to many enhancements and modifications as the users steadily increased and de-

manded more from the network. User requests included the capability of transferring files

from one university to another, as well as being able to perform remote logins and perform

tasks as if the user were actually there on the premises.

As time passed many enhancements were made to the existing Network Control Pro-

tocol but by 1973 it was clear that NCP was unable to handle the volume of traffic passing

through it. TCP/IP, developed by Kahn and Cerf in 1974, and gateway architecture were

proposed as solutions. This protocol was to be independent of the underlying network and

computer hardware as well as having universal connectivity throughout the network. This

would enable any kind of platform to participate in the network. In 1981 a series of request

for comments was issued, standardising the TCP/IP version 4 for the Arpanet.

Within 12 months the TCP/IP protocol had succeeded in replacing the NCP as the

dominant protocol of the Arpanet and was connecting to machines across the United States.

Today, it is the only protocol in use by the millions of computers which connect to the

Internet.

TCP/IP became popular primarily because of the work done at the Berkeley university.

Berkeley had been a leader in the unix development arena over the years and in 1983 they

released a new version that included the TCP/IP networking stack as an integral element.

That 4.2BSD version was made available to the world as public domain software. An

optimised TCP implementation followed in 1988 and practically every other version of

TCP/IP available today has its roots in the Berkeley version.

There are several interesting points about TCP/IP:

� It is not vendor-specific.
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� It has been implemented on everything from handheld devices to supercomputers.

� It is used in all kinds of networks - small networks connecting systems in an office

to global networks connecting systems across continents.

3.3.2 Layering in TCP/IP

Although the protocol family is referred to as TCP/IP, there are more members in this family

than just TCP and IP. Figure 3.2 shows the relationship of the protocols in the protocol suite

along with their approximate mapping into the OSI model described in section 3.2.2.

user
 process

ICMP

UDPTCP

user
 process

IP ARP RARP

hardware
interface

OSI Layers 5-7

OSI Layer 4

OSI Layer 3

OSI Layers 1-2

Figure 3.2: Layering in the TCP/IP protocol suite. [Adapted from Stevens [12]].

The TCP/IP protocol suite, with the services it provides at each layer provides solu-

tions to all the issues discussed in Section 3.1. Also, as the growth of the Internet has

demonstrated, it provides a robust and scalable implementation for a packet-switched net-

work. Stevens [12] provides a detailed description of how TCP/IP handles all the problems

described earlier.
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TCP Transmission Control Protocol. A connection-oriented protocol that provides

a reliable (page 16), full-duplex byte stream for user processes.

UDP User Datagram Protocol. A connectionless, not-reliable, protocol.

ICMP Internet Control Message Protocol. The protocol to handle error and control

information between gateways and hosts.

IP Internet Protocol. IP is the protocol that provides the packet delivery service

for TCP, UDP and ICMP.

ARP Address Resolution Protocol. The protocol that maps an Internet address into

a hardware address.

RARP Reverse Address Resolution Protocol. The protocol that maps a hardware address

into an Internet address.

3.4 System Area Networks

When the Beowulf concept was described in Section 1.2, we said it consists of a set of

individual computing nodes interconnected by a high speed data network. Although this

data network is similar to a Local Area Network, it would be incorrect to say it is a LAN.

In fact, a better term to describe this kind of network would be System Area Network or

SAN. This distinction is important because it is this distinction which forms the basis of

the present work.

Since Beowulfs come in all shapes and sizes, it would be difficult to come up with a

catch-all definition which describes all the SANs deployed on all the Beowulfs. A broad,

mostly applicable definition would describe a SAN as a high speed, switched network

connecting a cluster of computing nodes. Typical high-speed setups would be

Fast Ethernet Capable of 100Mb/sec transmission rate. Refer page 24.

Gigabit Ethernet Capable of 1Gb/sec transmission rate. Refer page 24

Myrinet This is a proprietary high performance network developed with clusters in mind [13].

Switched here refers to the way in which all the nodes are linked together. In typical

LAN environments, a hub is used to link all the nodes on the LAN. Use of a hub means

everyone is sharing the available bandwidth of the network. Latency is also high because

any node which wishes to transmit has to wait till there are no other packets travelling on

the wire. This also means that the network operates only in half-duplex mode - a node can

either send data or receive data, not both at the same time.

Switches solve these problems associated with hubs by providing a high speed, tem-

porary, one-to-one connection between any two nodes which wish to communicate. This
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results in each node having the full bandwidth of the underlying medium at its disposal. It

also results in low latencies and more importantly, permits full-duplex mode of operation -

each node can send and receive data simultaneously.

3.4.1 TCP/IP - an overkill?

The question we raise here is: For a network such as the System Area Network described

in Section 3.4, does the TCP/IP protocol suite provide an overkill of features? These un-

necessary features - would their removal improve network performance?

Consider the former question first. To answer it, let us go back to the issues discussed

in Section 3.1 and see how they hold up in the context of the SAN.

Gateways Since the system area network consists of a single network with no crossing of

boundaries into another, possibly non-similar network, there is no need to provide

translation services for migrating packets.

Fragmentation Again, since the packets always move on the same network, there is no

question of having differing values of MTUs in the packets journey from source to

destination. So fragmentation and reassembly are also non-issues.

Sequencing In a high speed, switched network it is extremely improbable that packets

arrive at the destination out of sequence. A check implemented at user level for the

minute probability of this occurrence, would be more efficient.

Error Control Error control for packet corruption is already implemented at the data-link

layer (OSI layers 1 & 2). The reliability of a SAN doesn’t warrant implementing

this error checking functionality at all layers of communication. Only functionality

making recovery of lost packets possible, need be provided.

Flow Control Typically, the compute nodes in the cluster have adequate buffers for the

kind of data that is expected to be communicated. If ever a situation arises where

a destination cannot process all incoming packets, it will start dropping packets. A

simple polling technique at the source node will resend the dropped packets. Iden-

tical to what UDP packets do.

Addressing Since there is just one network, we can overlook network level address reso-

lution. Also, in a SAN, the configuration of all nodes is know a priori. We know

the MAC addresses of all the Network Interface Cards connected to the network.

This means there is no need for address resolution at the host level. The process

identification at each host can be implemented in user space or OS level, as the need

be.
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Thus, we can see that most of the features provide by TCP/IP are superfluous in the

context of a SAN and a much simpler protocol can do the job.

3.4.2 Raw Ethernet Frames - A better approach?

In the context of Message Passing Systems which use TCP/IP for message passing, we

have shown that the use of TCP/IP may not be the best possible approach. We now propose

an alternative model for implementing communications in a message passing system.

The proposed model, depicted in Figure 3.3, uses just three layers for implementing a

communication stack.

User Process OSI Layers 5-7

Direct OSI Layers 3-4

Hardware Interface OSI Layers 1-2

Figure 3.3: Proposed 3 layer approach with approximate OSI model mapping.

The Direct layer will actually be implemented as a channel device for MPICH as de-

scribed in Section 5.2. This layer will process the MPI messages to be sent on the network

and prepare a raw ethernet frame in the appropriate form [Section 5.3.1] and pass it on to

the Hardware Interface layer. This layer will add the error-control information and other

information as required by the Ethernet protocol for a raw ethernet frame [Section 4.2].

Any MPI messages received by the Hardware Interface layer will be handed over to the

Direct layer where it will be processed and the received data sent into the appropriate User

Process layer buffers.

Note that this protocol is designed with just MPI in mind, where the best possible

performance is sought. All other network services are best handled by TCP/IP since there

are legions of network programs and tools which work with it.

Now we come to the second question raised above: would the removal of the nonessen-

tial features of TCP/IP improve performance? As can be seen, the alternative three layered

approach outlined above does not provide for any of these features. Will this lead to im-

proved performance? The answer to that is in the remainder of this document.
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CHAPTER 4

Using Ethernet Frames

4.1 Introduction and Brief History

Ethernet is the most widely used local area network (LAN) communication technology.

The original and most popular version of Ethernet supports a data transmission rate of 10

Mb/s. Newer versions of Ethernet called “Fast Ethernet” and “Gigabit Ethernet” support

data rates of 100 Mb/s and 1 Gb/s (1000 Mb/s). An Ethernet LAN may use coaxial ca-

ble, special grades of twisted pair wiring, or fiber optic cable. “Bus” and “Star” wiring

configurations are supported.

The first experimental Ethernet system was developed in the early 1970s by Bob Met-

calfe and David Boggs of the Xerox Palo Alto Research Center (PARC). It interconnected

Xerox Alto computers and laser printers at a data transmission rate of 2.94 Mb/s. In July

1976, Metcalfe and Boggs published their landmark paper entitled “Ethernet: Distributed

Packet Switching for Local Computer Networks” in the Communications of the Associa-

tion for Computing Machinery (ACM).

In 1979, Digital Equipment Corporation (DEC), Intel, and Xerox came together for the

purpose of standardizing an Ethernet system that any company could use. In September

1980 the three companies released Version 1.0 of the first Ethernet specification called the

“Ethernet Blue Book”, or “DIX standard” (after the initials of the three companies). It

defined the “thick” Ethernet system (10Base5), based on a 10 Mb/s CSMA/CD (Carrier

Sense Multiple Access with Collision Detection) protocol. It is known as “thick” Ethernet

because of the thick coaxial cable used to connect devices on the network. The first Ethernet

controller boards based on the DIX standard became available about 1982.

In 1983, the Institute of Electrical and Electronic Engineers (IEEE) released the first

IEEE standard for Ethernet technology. It was developed by the 802.3 Working Group of

the IEEE 802 Committee. The formal title of the standard was IEEE 802.3 Carrier Sense

Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical Layer

Specifications.



In 1985, IEEE 802.3a defined a second version of Ethernet called “thin” Ethernet,

“cheapernet”, or 10Base2. It used a thinner, cheaper coaxial cable that simplified the ca-

bling of the network. Although both the thick and thin systems provided a network with

excellent performance, they utilized a bus topology which made implementing changes in

the network difficult, and also left much to be desired in regard to reliability.

In 1990, a major advance in Ethernet standards came with introduction of the IEEE

802.3i 10Base-T standard. It permitted 10 Mb/s Ethernet to operate over simple Category

3 Unshielded Twisted Pair (UTP) cable. The widespread use of UTP cabling in existing

buildings created a high demand for 10Base-T technology. 10Base-T also permitted the

network to be wired in a “star” topology that made it much easier to install, manage, and

troubleshoot. These advantages led to a vast expansion in the use of Ethernet.

In 1995, IEEE improved the performance of Ethernet technology by a factor of 10

when it released the 100 Mb/s 802.3u 100Base-T standard. This version of Ethernet is

commonly known as “Fast Ethernet”.

In 1997, the IEEE 802.3x standard became available which defined “full-duplex” Eth-

ernet operation. Full-Duplex Ethernet bypasses the normal CSMA/CD protocol to allow

two stations to communicate over a point to point link. It effectively doubles the transfer

rate by allowing each station to concurrently transmit and receive separate data streams.

For example, a 10 Mb/s full-duplex Ethernet station can transmit one 10 Mb/s stream at the

same time it receives a separate 10 Mb/s stream. This provides an overall data transfer rate

of 20 Mb/s. The full-duplex protocol extends to 100 Mb/s Ethernet and beyond.

In 1998, IEEE once again improved the performance of Ethernet technology by a factor

of 10 when it released the 1 Gb/s 802.3z 1000Base-X standard. This version of Ethernet is

commonly known as “Gigabit Ethernet”.

The current IEEE 802.3 standards may be obtained online [14].

4.2 Frame Format

The Figure 4.1 illustrates the format of an Ethernet frame as defined in the original IEEE

802.3 standard.

Preamble A sequences of 56 bits having alternating 1 and 0 values that are used for syn-

chronization. They serve to give components in the network time to detect the pres-

ence of a signal, and begin reading the signal before the frame data arrives.

Start Frame Delimiter A sequence of 8 bits having the bit configuration 10101011 that

indicates the start of the frame.
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Preamble Start Dest. Source Type MAC Pad Frame

Frame MAC MAC Client Check

Delimiter Address Address Data Sequence

7 bytes 1 byte 6 bytes 6 bytes 2 bytes 0 - n 0 - p 4 bytes

bytes bytes

Figure 4.1: Ethernet Frame Format

Destination & Source MAC Addresses The Destination MAC Address field identifies the

station or stations that are to receive the frame. The Source MAC Address identifies

the station that originated the frame. A Destination Address may specify either an

individual address destined for a single station, or a multicast address destined for

a group of stations. A Destination Address of all 1 bits refers to all stations on the

LAN and is called a broadcast address.

Type The Type field indicates the nature of the MAC client protocol (protocol type). A list

of Ethernet protocol type assignments is made available by IEEE [15].

MAC Client Data This field contains the data transferred from the source station to the

destination station or stations. The maximum size of this field is 1500 bytes. If

the size of this field is less than 46 bytes, then use of the subsequent “Pad” field is

necessary to bring the frame size up to the minimum length.

Pad If necessary, extra data bytes are appended in this field to bring the frame length up to

its minimum size. A minimum Ethernet frame size is 64 bytes from the Destination

MAC Address field through the Frame Check Sequence.

Frame Check Sequence This field contains a 4-byte cyclical redundancy check (CRC)

value used for error checking. When a source station assembles a MAC frame,

it performs a CRC calculation on all the bits in the frame from the Destination

MAC Address through the Pad fields (that is, all fields except the preamble, start

frame delimiter, and frame check sequence). The source station stores the value in

this field and transmits it as part of the frame. When the frame is received by the

destination station, it performs an identical check. If the calculated value does not

match the value in this field, the destination station assumes an error has occurred

during transmission and discards the frame.

A more detailed discussion about the technical specifications of the Ethernet standard

is available at http://www.techfest.com/networking/lan/ethernet.htm .
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4.3 Sockets

On UNIX and derivative systems (including Linux), network communications take place

through operating system abstractions called sockets. A socket, simply put, creates an end-

point for communication. Sockets come in two varieties: connected and connectionless.

In the connected mode, both parties taking part in a communication open sockets at their

respective ends. Once these two sockets are registered at both ends to be ‘connected’, data

passed to a socket on one end will flow to the other end and vice versa. In the connectionless

mode, when data is to be transferred, a socket is opened locally and data is written to it -

unmindful of whether the receiving end has opened a corresponding receive socket. This

method is typically used in setups where short bursts of data are sent and the overhead of

setting up a connected socket connection doesn’t justify using that mode.

A typical example of connected sockets in action would be when surfing the Internet.

When a browser makes a request for a file from a web server, it is actually establishing a

connected socket communication method between the local client machine and the remote

web server. Once a connection is established, data starts flowing back and forth with no

further negotiations necessary (unless, of course, the connection is broken). Tools such as

ping and services such as NFS and NIS make use of connectionless sockets.

What makes sockets special is the fact that even a socket, like many other UNIX en-

tities - a disk device, a pipe or a normal file - is just a file descriptor and hence, can be

used as such. So one can simply establish a socket connection and use the standard read

and write calls to achieve data transfer seamlessly over a network. Although it is possible

to do that, it is rarely done, since there are better methods to do it. Several functions are

available which make the process of reading and writing to sockets much more convenient

and provide great flexibility and control.

The socket call is used to open a socket. The prototype of this call [16] is:

#include <sys/types.h>

#include <sys/socket.h>

int socket(int domain, int type, int protocol);

The domain parameter specifies a communication domain; this selects the protocol fam-

ily which will be used for communication. These families are defined in <sys/socket.h>.

Some of the frequently used families are:
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Name Purpose

PF UNIX, PF LOCAL Local communication

PF INET IPv4 Internet protocols

PF INET6 IPv6 Internet protocols

PF NETLINK Kernel user interface device

PF PACKET Low level packet interface

The socket has the indicated type, which specifies the communication semantics. Some

of the currently defined types for Linux 2.4.x are:

SOCK STREAM Provides sequenced, reliable, two-way, connection-based byte streams.

SOCK DGRAM Supports datagrams which are connectionless, unreliable messages of

fixed maximum length.

SOCK RAW Provides raw network protocol access.

The protocol specifies a particular protocol to be used with the socket. Normally only

a single protocol exists to support a particular socket type within a given protocol family.

However, it is possible that many protocols may exist, in which case a particular protocol

must be specified in this manner. The protocol number to use is specific to the ‘communi-

cation domain’ in which communication is to take place.

The aim of the current work is to send and receive messages at the data-link layer,

making use of raw ethernet frames. Hence, the domain to be used is PF PACKET and the

type is SOCK RAW.

For this communication domain, the protocol is same as the Type field of the ethernet

frame as described in Section 4.2. As mentioned earlier, the protocol numbers are assigned

by IEEE and they are available as system defined constants in <linux/if ether.h>. A

sample listing of the file is as follows:

/*

* These are the defined Ethernet Protocol ID’s.

*/

#define ETH_P_LOOP 0x0060 /* Ethernet Loopback packet */

#define ETH_P_IP 0x0800 /* Internet Protocol packet */
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#define ETH_P_ARP 0x0806 /* Address Resolution packet */

#define ETH_P_IEEEPUP 0x0a00 /* Xerox IEEE802.3 PUP packet */

#define ETH_P_DEC 0x6000 /* DEC Assigned proto */

#define ETH_P_RARP 0x8035 /* Reverse Addr Res packet */

#define ETH_P_IPV6 0x86DD /* IPv6 over bluebook */

...

...

For the present purpose, any of the above ID’s can be used, with the exception of ETH P LOOP

which is reserved for communication local to the machine. We choose the protocol id as

ETH P IPV6 since it provides a convenient filter. When the receive function [Section 5.3.3]

is appropriately set, only packets bearing this protocol will be passed by the kernel to the

receive function. Since no services on the SAN in consideration currently use this proto-

col, it is guaranteed that any frame bearing this protocol id has originated from the Send

function [Section 5.3.2] of our program.

Thus, the socket call made in the send and receive functions will look like this:

sock handle = socket(PF PACKET, SOCK RAW, htons(ETH P IPV6));

The htons function is to convert from host byte order to network byte order. More

information on byte ordering can be obtained from “UNIX Network Programming” [12].

Once a socket has been opened, data can be written to it using the sendto [17] function and

data can be read from it using the recvfrom [18] function. More information about using

the low level packet interface can be obtained from packet man page [19].
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CHAPTER 5

Message Passing Using Raw Ethernet Frames

5.1 Goal

The goal of the present work is to implement a few of the MPI point-to-point communica-

tion calls using raw ethernet frames and benchmark them against the standard MPICH calls

which use TCP/IP for communication. The benchmarks will measure such variables as la-

tency and bandwidth [Section 6.1], especially for small message sizes which are typical of

many message passing algorithms in use.

5.2 Initial Approach - the channel device

As described in Chapter 2, the MPICH implementation of MPI uses a powerful layered

approach and provides the channel interface which consists of the simplest point-to-point

communication primitives based on which all other message passing routines are imple-

mented.

Messages are sent in two parts: a control part containing information on the MPI

message tag, size and communicator as well as about the message itself, and the data part

containing the actual data. There are separate routines to send and receive the control and

data parts, along with a routine to check to see if any messages are available.

A bare minimum interface [9] must provide at least the following five functions:

MPID ControlMsgAvail Indicates whether a control message is available.

MPID RecvAnyControl Reads the next control message. If no messages are available,

blocks until one can be read.

MPID SendControl Sends a control message.

MPID RecvFromChannel Receives data from a particular channel.



MPID SendChannel Sends data on a particular channel.

Although conceptually the task of implementing a new channel device is a simple

one, the lack of good documentation coupled with the poorly documented source codes

of existing channel devices made this task very difficult. After many failed attempts, this

approach was abandoned in favour of a standalone implementation which does not make

use of the MPICH framework.

5.3 Standalone Implementation

After the inability to create a channel device, it was decided to implement a standalone

framework which would provide simple send and receive MPI message passing calls using

raw ethernet frames. Certain assumptions were made in designing this framework.

� All MPI processes are part of the same communicator:

the default MPI COMM WORLD.

� Messages are short, less than 1488 bytes [Section 5.3.1].

� Messages are of type MPI byte. The size of this datatype is one byte.

� The kernel provides adequate buffers for the raw sockets in use.

The rationale for making these assumptions becomes clear if we take a look at the goal

of the current work [Section 5.1]. These assumptions, while making the task of implement-

ing the framework simpler, in no way affect the quality or integrity of our benchmarks.

5.3.1 Ethernet Frame Format chosen

With the basic framework in place, we next define the frame format to be used for the raw

ethernet frames. A basic blocking MPI send call has the following prototype:

int MPI_Send(void *buf, int count, MPI_Datatype datatype, int dest,

int tag, MPI_Comm comm)

where

buf initial address of send buffer
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count number of elements in send buffer

datatype datatype of each send buffer element

dest rank of destination

tag message tag

comm communicator

In our chosen framework, datatype and comm remain constant across all messages

passed and hence need not be communicated explicitly.

A basic blocking MPI receive call has the following prototype:

int MPI_Recv(void *buf, int count, MPI_Datatype datatype, int source,

int tag, MPI_Comm comm, MPI_Status *status)

where

buf initial address of receive buffer

count maximum number of elements in receive buffer

datatype datatype of each receive buffer element

source rank of source

tag message tag

comm communicator

status status object

Again, comm and datatype can be ignored. The status is a structure which provides

some information about the completed receive call to the programmer. It is not strictly

necessary and can be ignored.

Thus, a receive call can sort through all received messages (raw ethernet frames) and

return the one requested if it can determine the tag, the rank of the sender (source) and the

size of the data received (count) for each ethernet frame it reads.

Based on this requirement, we defined the raw ethernet frame format as shown in Fig-

ure 5.1.

Note that the Preamble, Start Frame Delimiter, Pad and Frame Check Sequence bit

sequences [Section 4.2] have not been shown here. This is because these bit sequences

are added by the ethernet device (the Ethernet card) to every frame received by it from the
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Dest. Source Protocol Message Source Count Client

MAC MAC Id Tag Rank Data

Address Address

6 bytes 6 bytes 2 bytes 4 bytes 4 bytes 4 bytes 0 - 1488

bytes

Figure 5.1: New Ethernet Frame Format Chosen

layer above it, the OSI Layer 2 [Section 3.2]. When a frame is written to a raw socket, it is

enough if it contains the Destination MAC, the Source MAC, the Protocol id and the data.

Also of interest is that the largest payload this frame can carry is 1488 bytes.

5.3.2 The Send Call

To prepare a raw frame conforming to the above described format, the Send function needs

the following information:

� Destination MAC address
� Source MAC address
� Protocol Id
� The message tag
� The rank of the source process
� The number of bytes to be sent (count)
� The data to be sent

From the discussion on page 30 we know that the last four of the above are read-

ily available from the calling process. The Protocol Id can be chosen from one listed in

<include/linux/if ether.h>. We choose the protocol id as ETH P IPV6 for reasons

cited on page 28 of Section 4.3.

For the first two items on the above list, we need a mapping between the rank of a pro-

cess and the MAC address of its ethernet interface. The MPI Get processor name func-

tion provides a convenient way to get this mapping. This function returns the hostname of

the node on which the calling process is running. Since we know the MAC address for the

ethernet interface on each node (running /sbin/ifconfig will give the MAC address),

we can map every process’s rank to the hostname and hence the MAC address of the cor-

responding node. This information is propagated to all other participating processes by a

call to the MPI AllGather function.
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With this mapping information, we have all the data needed to build a raw frame. The

prototype of the Send function is as follows:

int send_direct(int dest_node, int source_node, int tag, int sender_rank,

int count, void *data)

The send direct function returns a 0 on error, 1 otherwise. The pseudo code for the

Send function is as follows:

if socket not open

open raw socket

set socket parameters

get MAC addresses for source and destination nodes

prepare the raw frame

write frame to socket

end

5.3.3 The Receive Call

In our discussion on page 31, we concluded that the Receive function needs to sort through

incoming frames based on the following parameters:

� The message tag

� The source process’s rank

� The number of bytes sent

If an incoming frame matches these parameters as defined by the calling function, then

the data part of this frame is returned in the calling function assigned receive buffer. The

prototype for the Receive function is as follows:

int recv_direct(int tag, int sender_rank, int count, void *data)
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The recv direct function returns a 0 on error, 1 otherwise. The pseudo code for the

Receive function is as follows:

if socket not open

open raw socket

set socket parameters

while required message not received

read frame from socket

if frame incomplete

discard frame and read next frame

if frame matches required parameters

return data to calling function in receive buffer

else

read next frame

end
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CHAPTER 6

Benchmarks

Benchmarking of parallel computing systems provides a method to compare the various

high performance computing platforms available. Because of the high portability of MPI

code and the fact that MPI implementations are available on almost all HPC platforms,

benchmarking MPI performance often provides the best metrics to compare these systems.

Several benchmarks such as the NAS Parallel Benchmarks [20] from NASA Ames

Research Center and the HPL benchmark [21], a distributed memory version of the pop-

ular Linpack benchmark, are available for measuring MPI performance. For the present

work, we chose MPBench [22], part of the LLCbench [23] suite of benchmarks. From the

MPBench website:

... a program to measure the performance of some critical MPI functions. By

critical we mean that the behavior of these functions can dominate the run

time of a distributed application.

6.1 MPbench

MPBench is a benchmark to evaluate the performance of MPI on Beowulf style clusters,

Massively Parallel Processing systems and clusters of workstations. It uses a flexible and

portable framework to allow benchmarking of any message passing layer with similar send

and receive semantics. This makes it easy for us to use the same code to benchmark both

MPI send-receive calls and the direct versions of these calls explained in Section 5.3. It

generates two types of reports, consisting of the raw data files and Postscript graphs. The

program does not provide any interpretation or analysis of the data,such analysis is left

entirely to the user.



6.1.1 How it works

MPBench currently tests eight different MPI calls. The following functions are measured.

The default number of processes used can be specified.

Benchmark Units # Processes

Bandwidth Megabytes/sec 2

Roundtrip Transactions/sec 2

Application Latency Microseconds 2

Broadcast Megabytes/sec user defined value

Reduce Megabytes/sec user defined value

AllReduce Megabytes/sec user defined value

Bidirectional Bandwidth Megabytes/sec 2

All-to-All Megabytes/sec user defined value

All tests are timed in the following manner.

1. Set up the test.

2. Start the timer.

3. Loop of operations over the message size as a power of two and the iteration count.

4. Verify that those operations have completed.

5. Stop the timer.

6. Compute the appropriate metric.

By default, MPBench measures messages from 4 bytes to 216 bytes, in powers of two

for 100 iterations. For the present work, we modified the test to run over message sizes

from 4 bytes to 210 bytes. Each test is run a single time before testing to allow for cache

setup and routing. The cache is then flushed before each repetition and before each new

message size is tested. The cache is not flushed however between iterations on the same

message size, which are averaged.

In MPBench, calls to the timer around every operation are avoided, because this often

results in the faulty reporting of data. Some of these operations take so little time, that the

accuracy and latency of accessing the system’s clock would significantly affect the reported

data. Thus it is only appropriate that timing operations are performed outside the loop.

Only the following tests which measure the point-to-point performance parameters

were run for the present work. In these tests there are two tasks, termed master and slave.
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6.1.2 Bandwidth

MPBench measures bandwidth with a doubly nested loop. The outer loop varies the mes-

sage size and the inner loop measures the send operation over the iteration count. After

the iteration count is reached, the slave process acknowledges the data it has received by

sending a four byte message back to the master. This informs the sender when the slave has

completely finished receiving its data and is ready to proceed. This is necessary, because

the send on the master may complete before the matching receive does on the slave. This

exchange does introduce additional overhead, but given a large iteration count, its effect is

minimal.

The master’s pseudo code for this test is as follows:

do over all message sizes

start timer

do over iteration count

send(message size)

recv(4 bytes)

stop timer

The slaves’ pseudo code is as follows:

do over all message sizes

start timer

do over iteration count

recv(message size)

send(4 bytes)

stop timer
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6.1.3 Roundtrip

Roundtrip times are measured in much the same way as bandwidth, except that, the slave

process, after receiving the message, echoes it back to the master. This benchmark is often

referred to as ping-pong. Here the metric used is transactions per second, which is a com-

mon metric for database and server applications. No acknowledgment is needed with this

test as it is implicit given its semantics.

The master’s pseudo code for this test is as follows:

do over all message sizes

start timer

do over iteration count

send(message size)

recv(message size)

stop timer

The slaves’ pseudo code is as follows:

do over all message sizes

start timer

do over iteration count

recv(message size)

send(message size)

stop timer

6.1.4 Application Latency

Application latency is something relatively unique to MPBench. This benchmark can prop-

erly be described as one that measures the time for an application to issue a send and con-
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tinue computing. The results for this test vary greatly given how the message passing layer

is implemented. For example, PVM will buffer all messages for transmission, regardless

of whether or not the remote node is ready to receive the data. MPI on the other hand, will

not buffer messages over a certain size, and thus will block until the remote process has

executed some form of a receive. This benchmark is the same as bandwidth except that

there is no acknowledgement of the data and results are reported in units of time.

The master’s pseudo code for this test is as follows:

do over all message sizes

start timer

do over iteration count

send(message size)

stop timer

The slaves’ pseudo code is as follows:

do over all message sizes

start timer

do over iteration count

recv(message size)

stop timer

6.2 Results

The tests were run on Sruthi [24], the Beowulf cluster run by the Aerospace Engineering

Department, IIT Madras. Runs were carried out on two diskless nodes, and not on the main

server and a node, to ensure maximum parity between the communicating entities. This

way, we could ensure that the load on each client is (more or less) identical. Also, no other

process was utilizing the network, save for the NFS calls which are used to transfer the

benchmark code to the nodes from the server.
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6.2.1 Bandwidth

The metric reported for this test is KB/sec and the results are shown in Figure 6.1. The

increasing trend with size of messages is expected; an increase in message size will mean

more KB/sec since the processing time for larger frames doesn’t increase at the same rate.

Of interest in the chart is the widening gap between the two cases. Also, it is expected

that both curves reach a plateau for higher message sizes. This is also consistent with the

results of this benchmark run on other platforms. The chink in the TCP/IP curve at message

size of 512 bytes is unexplained but it is suspected that it is due to MPICH switching the

mode of the send call.
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Figure 6.1: Benchmark: Bandwidth

6.2.2 Roundtrip

This test presents results, shown in Figure 6.2, in terms of transactions carried out per sec-

ond. The value for the raw ethernet case is roughly twice that for the TCP/IP case for
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small message sizes. For small messages, roundtrip time is largely dominated by protocol

overheads and the means to access the network. This is the reason for the large differ-

ence in values for small messages for the two cases; the advantage that the raw ethernet

implementation enjoys in terms of a light protocol diminishes with increase in message

size.
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Figure 6.2: Benchmark: Roundtrip

6.2.3 Application Latency

The latency times for this test are reported in microseconds (Figure 6.3). Again, as can

be seen, the light weight protocol provides substantial gains vis-à-vis the TCP/IP protocol.

The steep values for the MPICH case for 4 byte messages are unexplained. These steep

values kept recurring in various runs with different configurations.

Of interest in all these benchmark results is the almost constant values for the raw

ethernet frames case when the message sizes were less than 32 bytes. This is easy to

explain. The Ethernet frame specification [Section 4.2] allows for a 1500 byte Client Data
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field, the minimum for this field being 46 bytes. As explained earlier, if this field is less 46

bytes long, then the subsequent Pad field is filled up till the size comes up to the minimum.

The frame format adopted for the light protocol [Section 5.3.1] uses up 12 bytes of this

Client Data field by way of the tag, rank and count fields. So if the actual message sent is

less than 34 bytes, then the Pad field will be filled appropriately. Thus, the outgoing frame

size for all message sizes less than 34 bytes is the same, which explains the results.
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CHAPTER 7

Conclusions and Scope for Further Work

As has been demonstrated in the previous chapters, the use of raw ethernet frames for

message passing has the potential of affecting a significant improvement in the communi-

cation performance in Beowulf clusters. The task of implementing a solution based on this

concept remains. As explained in Section 2.3, MPICH provides a convenient method to

achieve this.

The group at ANL recently released a beta-test version of MPICH2 [25], the next gen-

eration implementation of MPICH. MPICH2 provides several enhancements which include

complete support for the MPI-2 standard, a redesigned and more powerful abstract device

interface - ADI3, a new channel interface - CH3 and a new interface called the method

interface.

Of particular interest in the new version is a CH3 device implementation of the ADI on

TCP. It defines a specific interface to the low level OS TCP operations. This implementation

is designed to provide a relatively small interface to port MPICH to new platforms, in a

manner similar to the channel interface in the earlier MPICH [Section 2.3.2]. The important

change here is the doing away of the p4 layer which was used to provide communication

functionality on workstation class implementations. This is expected to make the task of

implementing a device which utilizes the raw ethernet frames functionality much more

easier and straight-forward.

Also of interest in the new release is the method interface. This defines a set of oper-

ations that are needed to implement communication on a single connection. This interface

allows multiple communication methods to be used in a single MPI program. This fea-

ture could be exploited to provide functionality wherein the user can switch between a raw

ethernet frames based Direct protocol or any other protocol such as TCP/IP. This will be

especially useful during the development life cycle of the Direct implementation. Since the

ADI expects implementation of only a few specific calls in the communication device and

provides a software emulation of all other MPI calls based on these core calls, it is possible

that these software emulations are not as efficient as implementations of these calls at the



device level. If need be, the user can avail of more efficient versions of calls using other

devices till such time as the Direct device provides those calls.

The upcoming release of MPICH promises to make the task of implementing a raw

ethernet frames based communication framework both easy and attractive. Once such a

framework is in place, the preliminary results made available by this work can be verified

by real-world tests.
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